Abstract

Alzheimer's disease (AD) is a neurodegenerative condition that primarily affects brain tissue. Because the retina and brain share the same embryonic origin, visual deficits have been reported in AD patients. Artificial Intelligence (AI) has recently received a lot of attention due to its immense power to process and detect image hallmarks and make clinical decisions (like diagnosis) based onimages. Since retinal changes have been reported in AD patients, AI is being proposed to process images to predict, diagnose, and prognosis AD. As a result, the purpose of this review was to discuss the use of AI trained on retinal images of AD patients. According to previous research, AD patients experience retinal thickness and retinal vessel density changes, which can occasionally occur before the onset of the disease's clinical symptoms. AI and machine vision can detect and use these changes in the domains of disease prediction, diagnosis, and prognosis. As a result, not only have unique algorithms been developed for this condition, but also databases such as the Retinal OCTA Segmentation dataset (ROSE) have been constructed for this purpose. The achievement of high accuracy, sensitivity, and specificity in the classification of retinal images between AD and healthy groups is one of the major breakthroughs in using AI based on retinal images for AD. It is fascinating that researchers could pinpoint individuals with a positive family history of AD based on the properties of their eyes. In conclusion, the growing application of AI in medicine promises its future position in processing different aspects of patients with AD, but we need cohort studies to determine whether it can help to follow up with healthy persons at risk of AD for a quicker diagnosis or assess the prognosis of patients with AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call