Abstract
The vertebrate visual system is determined by two main factors, a species' lifestyle and phylogenetic legacy. Studying the visual system in outgroup lineages may shed some light on the balance of these factors within a certain radiation. We studied the topography of retinal ganglion cells (RGCs) in the retina of the oriental fire-bellied toad Bombina orientalis. These toads belong to the ancient superfamily Discoglossoidea, a sister group to all extant Anura except for two small families. RGCs were retrogradely labeled with tetramethylrhodamine- dextran amine (TMR-DA) and examined in retinal wholemounts. RGCs occurred all over the retina except for the far periphery. Their total number was [Formula: see text] ([Formula: see text], [Formula: see text]). They comprised 73-77% of all cells in the ganglion cell layer. The spatial density of GCs increased gradually from the dorsal and ventral retinal periphery toward the equator to form a weak visual streak and a moderately pronounced area centralis. The minimum density was [Formula: see text], and the maximum, [Formula: see text]. The maximum density gradient was [Formula: see text]. The spatial resolution was minimum in the dorsal and ventral periphery ([Formula: see text] and [Formula: see text] cycles per degree in water and air, respectively). Intermediate values of spatial resolving power were found within the visual streak ([Formula: see text] and [Formula: see text] cycles per degree) and reached a peak in area centralis ([Formula: see text] and [Formula: see text] cycles per degree). This is sufficient for efficient prey location and capture. The relatively high RGC density and the presence of specialized retinal regions in oriental fire-bellied toads are consistent with their highly visual behavior. A brief review comparing the phylogeny and ecology of this with other anuran species suggests that the main factor shaping the RGC distribution in Anura is phylogenetic legacy; the environmental pressure results mainly in adjusting the maximum spatial density of RGCs (and hence the visual acuity) to meet the species' needs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have