Abstract

A central function of vision is determining the layout and size of objects in the visual field, both of which require knowledge of egocentric distance (the distance of an object from the observer). A wide range of visual cues can reliably signal relative depth relations among objects, but retinal signals directly specifying distance to an object are limited. A potential source of distance information is the pattern of blurring on the retina, since nearer fixation generally produces larger gradients of blur on the extra-foveal retina. While prior studies implicated blur as only a qualitative cue for relative depth ordering, we find that retinal blur gradients can act as a quantitative cue to distance. Surfaces depicted with blur gradients were judged as significantly closer than those without, with the size of the effect modulated by the degree of blur, as well as the availability of other extra-retinal cues to distance. Blur gradients produced substantial changes in perceived distance regardless of relative depth relations of the surfaces indicated by other cues, suggesting that it operates as a robust cue to distance, consistent with the empirical relationship between blur and fixation distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.