Abstract

In the traditional framework of cognitive load theory, it is assumed that the acquisition of domain-specific knowledge structures (or schemas) is the only instructional goal, and therefore, the theory is applicable to any instructional task. Accordingly, the basic concepts of intrinsic (productive) and extraneous (unproductive) types of cognitive load were defined based on the relevance (or irrelevance) of the corresponding cognitive processes that impose the load to achieving this universal instructional goal, and the instructional methods advocated by this theory are aimed at enhancing the acquisition of domain-specific schemas. The paper suggests considering this goal within the whole variety of possible specific goals of different learner activities that could be involved in complex learning. This would result in narrowing down of boundaries of cognitive load theory and have implications for distinguishing types of cognitive load, sequencing different goals and instructional tasks, considering the role of learner expertise, and other aspects of complex learning. One of the consequences of this reconceptualization is abandoning the rigid explicit instruction versus minimal guidance dichotomy and replacing it with a more flexible approach based on differentiating specific goals of various learner activities in complex learning. In particular, it may allow reconciling seemingly contradictory results from studies of the effectiveness of worked examples in cognitive load theory (supporting the initial fully guided explicit instruction for novice learners) and studies within the frameworks of productive failure and invention learning that have reportedly demonstrated that minimally guided tasks provided prior to explicit instruction might benefit novice learners.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call