Abstract

IVF remains one of the most exciting modern scientific developments and continues to have a tremendous impact on people's lives. Since its beginnings, scientists have studied and critically analysed the techniques in order to find ways to improve outcomes; however, little has changed with the actual technology and equipment of IVF. Semen is still processed in test tubes and fertilization and culture still occurs in culture dishes. New technological possibilities exist with the burgeoning advancement of microfluidic technology. Microfluidics is based on the behaviour of liquids in a microenvironment. Although a young field, many developments have occurred which demonstrate the potential of this technology for IVF. In this review, we briefly discuss the physical principles of microfluidics and highlight some previous utilizations of this technology, ranging from chemical analysis to cell sorting. We then present the designs and outcomes for microfluidic devices utilized thus far for each step in IVF: gamete isolation and processing, fertilization, and embryo culture. Finally, we discuss and speculate on the ultimate goal of this technology--development of a single, integrated unit for in-vitro assisted reproduction techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call