Abstract

Assisted reproductive technologies (ARTs) encompass some of the most exciting modern scientific developments that tremendously impacts society at many levels. Since the beginning of ARTs, scientists have studied and critically analyzed techniques in order to find ways to improve outcomes; however, little has changed with the actual technology and equipment for embryo in vitro production (IVP). New technologic possibilities exist with the escalating advancements of microfluidic technologies. Microfluidics is based on the behavior of liquids in a microenvironment. Although a young field, substantial research demonstrates the potential of this technology in gamete and embryo isolation and culture. In this review, we briefly discuss physical principles of microfluidics and highlight previous utilization of this technology. We then present designs and outcomes for microfluidic devices utilized thus far for different steps in the IVP process: gamete isolation and processing, fertilization, and embryo culture. Finally, we discuss and speculate on future use of microfluidics for assessing embryo viability and multiparametric analysis of embryo secretions and the integration of ART stage-specific capabilities that will lead to an “IVP-lab-on-a-chip”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.