Abstract
Pharmaceutical industry and the art and science of drug development are sorely in need of novel transformative technologies in the current age of digital health and artificial intelligence (AI). Often described as game-changing technologies, AI and machine learning algorithms have slowly but surely begun to revolutionize pharmaceutical industry and drug development over the past 5 years. In this expert review, we describe the most frequently used machine learning algorithms in drug development pipelines and the -omics databases well poised to support machine learning and drug discovery. Subsequently, we analyze the emerging new computational approaches to drug discovery and the in silico pipelines for drug repositioning and the synergies among -omics system sciences, AI and machine learning. As with system sciences, AI and machine learning embody a system scale and Big Data driven vision for drug discovery and development. We conclude with a future outlook on the ways in which machine learning approaches can be implemented to buttress and expedite drug discovery and precision medicine. As AI and machine learning are rapidly entering pharmaceutical industry and the art and science of drug development, we need to critically examine the attendant prospects and challenges to benefit patients and public health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.