Abstract

Depth profiles of tritium (T) loaded by gas and plasma in tungsten (W) coatings on ferritic steels have been examined by using a tritium imaging plate technique and their changes during storage and after annealing have been monitored. The depth profiles of T consisted of 4 components, (I) T trapped at impurities and defects newly introduced in the near surface region of the coating by plasma loading, (II) T trapped at the inner surfaces of the grains and dissolved in the grains resulting in a flat depth profile throughout the whole coating, (III) T dissolved and diffused into the substrate giving a decaying profile, and (IV) T trapped at the backside surface of the substrate. The results support that retention of T is mainly caused by pore diffusion of gaseous T followed by dissolution and trapping in/at each W grain, and dissolution of T into the F82H substrate to allow permeation . Release of T proceeds in an opposite way of retention but each component desorbs independently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.