Abstract

Previously, we have developed a gradient elution system for pillar array columns, which achieved faster separation than isocratic elution. In this study, we validated gradient elution in microchip liquid chromatography (LC) and investigated the retention and bandwidth predictions of fluorescently labeled aliphatic amines in fast gradient elution chromatography using semi-empirical retention models. The retention times and peak widths under different gradient elution programs were predicted by three solvent strength models and compared with the experimental results. The relative errors of prediction for the retention times and peak widths were below 14 % and 12 %, respectively. The results showed that the solvent strength models could be utilized for predicting the retention times and peak widths under gradient elution in the microchip LC system and that the gradient elution program for pillar array columns worked efficiently. The prediction by the retention model promises to be a potential tool for essential compound identification in biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.