Abstract
First report for the resynthesis of Brassica napus by recombining A and C genome from B. juncea and B. carinata , respectively. Also documents B genome introgressions in resynthesized B. napus. Resynthesis of Brassica napus (AACC) was achieved by hybridizing Brassica juncea (AABB) with Brassica carinata (BBCC). This was facilitated by spontaneous chromosome doubling in the F1 hybrid (ABBC) to yield octaploid (AABBBBCC), elimination of extra B genome chromosomes in the resulting octaploid and in subsequent selfed generations, aided with directed selection for fertile plants having B. napus morphology. Twenty-five plants with varying degrees of resemblance to natural B. napus were identified from 17 A5 progenies and assayed for cytogenetic stability and genetic diversity. Majority of these plants, except six (2n = 38) were hyperploids (2n = 40-56). The six plants with 2n = 38 were designated as derived B. napus types. These showed an expected meiotic configuration of 19II at metaphase-I, with 19-19 distribution at anaphase-I. Genotyping based on A and C genome specific primers confirmed genetic identity of six derived (2n = 38) B. napus plants with natural types whereas genotyping with B genome specific primers indicated introgression of B genome segments. This was also confirmed by genomic in situ hybridization (GISH). Strong signals of B genome probe were detected, proving hitherto unreported genetic exchanges between B and A/C chromosomes. These introgressions possibly occurred en route five generations of selfing. Derived plants yielded fertile hybrids in crosses with natural B. napus var. GSC 6. The selfed derived plants as evaluated in A6 plant to progeny rows were morphologically similar to natural B. napus, and meiotically stable. Agronomic assessment of these progenies revealed variation for key morpho-physiological traits. Of special interest were the progenies with plants having oil content exceeding 47% as against about 39-41% in existing cultivars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.