Abstract

Aerobic glycolysis is an important metabolic rewiring in cancer cells to promote glucose uptake and lactate production, and targeting aerobic glycolysis becomes a promising therapeutic approach for cancer. Here we reported that a small polyphenol resveratrol exhibited profound anti-tumor efficacy on human ovarian cancer. Resveratrol markedly inhibited the proliferation, migration, and invasion of A2780 and SKOV3 ovarian cancer cells, while impaired glycolysis, and induced apoptosis in these cells. Exposure to resveratrol increased the expression and activation of AMPK and Caspase 3, and decreased the expression and activation of AMPK downstream kinase mTOR. Moreover, AMPK inhibitor Compound C significantly abolished the effects of resveratrol on the activation of AMPK and Caspase 3 and the inhibition of mTOR. In addition, in vivo data indicated that resveratrol suppressed ovarian cancer growth and liver metastasis in xenograft mouse model. In conclusion, our findings provide new insight into the mechanism underlying anticancer efficacy of resveratrol and help the utilization of resveratrol as a novel agent for the treatment of ovarian cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call