Abstract

To investigate the influence of two types of tumor-associated macrophages (TAMs) on the biological function of human ovarian cell lines in vitro. (1) M2 macrophage release was induced by IL-4, and M1 macrophage release by phorbol myristate acetate (PMA) in vitro. Flow cytometry was used to distinguish these two types; (2) transwell culture system was used to establish a non-contact co-culture model of macrophage and ovarian cancer cells (SKOV3, HEY, HO8910 and A2780) in vitro. The microenvironment of ovarian cancer was simulated in vitro. (3) The proliferation, apoptosis, migration and invasion of ovarian cancer cells SKOV3, HEY, HO8910 and A2780 were analyzed after co-culture. Their proliferation was detected by CCK8 method, apoptosis by flow cytometry, Annexin V-FITC/PI double staining, invasion by Transwell assay, and migration by wound healing test. (1) IL-4-induced macrophages (M2) overexpressed CD163, and PMA-induced macrophages (M1) overexpressed HLA-DR. After co-culturing primary macrophages with ovarian cancer cells (SKOV3, HEY, HO8910, A2780), macrophage CD163 was highly expressed. (2) Proliferation and apoptosis of ovarian cancer cells (SKOV3, HEY, HO8910, A2780): the proliferation of ovarian cancer cells in M2 co-culture group increased compared to that in M1 co-culture group and primary co-culture group (p < 0.05); the apoptosis of ovarian cancer cells in M2 co-culture group decreased compared to that in M1 co-culture group and primary co-culture group (p < 0.05). (3) Migration and invasion of ovarian cancer cells (SKOV3, HEY, HO8910, A2780): the invasion of ovarian cancer cells in M2 co-culture group increased compared to that in M1 co-culture group and primary co-culture group (p < 0.05); the migration of ovarian cancer cells in M2 co-culture group increased compared to that in M1 co-culture group and the primary co-culture group (p < 0.05). In the simulated in vitro tumor microenvironment, co-cultured ovarian cancer cells polarized macrophages to the M2 phenotype. Furthermore, M2 macrophages enhanced the proliferation, invasion and migration, and inhibited the apoptosis of ovarian cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.