Abstract
Phenotypic switching of vascular smooth muscle cells (VSMCs) plays an initial role in neointimal hyperplasia, the main cause of many occlusive vascular diseases. The aim of this study was to measure the effects of resveratrol (RSV) on the phenotypic transformation of VSMCs and to investigate its mechanism of action. Cultured VSMCs isolated from rat thoracic aorta were prepared with serum starvation for 72 hours followed by RSV treatment (50-200 μmol/L) and 10% serum stimulation. Male Sprague-Dawley rats, subjected to carotid arteries injury from a balloon catheter, were exposed to intraperitoneal injection of RSV (1 mg/kg) or saline and were killed after 7 or 28 days. Compared with cells in the serum-induced group, VSMCs in the RSV or N-[N-(3, 5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment group exhibited significant decreases of proliferation and migration. The total and cytoplasmic Notch-1 levels were declined by RSV, accompanied by a significant increase in smooth muscle α-actin and smooth muscle myosin heavy chain protein. The expression of Notch-1, Jagged-1, Hey-1, and Hey-2 mRNA in balloon-injured arteries at 7 days was decreased by RSV treatment. Arteries from RSV-treated rats showed less neointimal hyperplasia, lower collagen content, and a lower rate of cells positive for proliferating cell nuclear antigen 28 days after injury, compared with saline controls. The results indicate that RSV can attenuate phenotypic switching of VSMCs after arterial injury through inhibition of the Notch pathway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have