Abstract

The aim of this study was to explore the signaling pathways associated with the effects of tumor necrosis factor alpha (TNF-α) on matrix metalloproteinase-1 (MMP-1) and MMP-3 expression in the human dermal fibroblast cell line CCD-966SK. TNF-α upregulated MMP-1 and MMP-3 mRNA and protein expression, and NFκB/p65 activation was found to be involved in TNF-α-induced MMP-1 and MMP-3 upregulation. TNF-α induced p65 phosphorylation at Ser536 and acetylation at Lys310. p300 knockdown suppressed TNF-α-induced p65 acetylation and reduced MMP-1 and MMP-3 expression in TNF-α-treated cells, but did not greatly restore MMP-1 and MMP-3 expression when p65 phosphorylation was inhibited by Bay11-7082 (IκBα inhibitor). NF-κB/luciferase reporter assay revealed that p300-mediated p65 acetylation was crucial for TNF-α-induced nuclear factor-kappa B (NF-κB) transcriptional activity. The chromatin immunoprecipitation (ChIP) assay indicated that TNF-α increased p300 recruitment to the MMP-1 and MMP-3 promoter regions surrounding the NFκB-binding site. Resveratrol notably inhibited TNF-α-induced MMP-1 and MMP-3 upregulation and abrogated TNF-α-induced p65 acetylation, leading to the downregulation of MMP-1 and MMP-3 expression in TNF-α-treated cells. Our data indicate that TNF-α-induced p300-mediated p65 acetylation leads to the upregulation of MMP-1 and MMP-3 expression in dermal fibroblasts, whereas resveratrol reduces this TNF-α-induced upregulation by downregulating p300 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call