Abstract
Monocyte chemotactic protein-1 and its receptor, CCR2, play a key role in atherosclerosis. We determined the effect of the polyphenol, resveratrol, on CCR2 and the mechanisms involved. Resveratrol treatment inhibited 125I-MCP-1 binding to THP-1 cells; 31, 56, 84% decrease for 10, 50 and 100 μM resveratrol, in the absence of any effect on receptor affinity. The inhibitory effect of resveratrol on 125I-MCP-1 binding to THP-1 cells and on CCR2 protein expression determined by FACS analysis was attenuated by treatment with L-NAME (NOS inhibitor), PD98059 (MAPK inhibitor) and LY294002 (PI3K inhibitor), whereas neither X/XO (reactive oxygen species generator) nor ICI182780 (estrogen receptor antagonist) had any effect. Concomitant with a decrease in CCR2 protein expression, resveratrol inhibited THP-1 CCR2 mRNA levels, in the absence of any effect on its stability; 26 and 45% inhibition at 10 and 50 μM resveratrol, respectively. This effect was not altered by co-treatment with L-NAME, PD98059 or ICI182780, but was potentiated by LY294002 and X/XO. Conclusions: Resveratrol inhibits monocyte CCR2 binding activity in an NO-, MAPK- and PI3K-dependent manner, whereas it inhibits CCR2 mRNA in an NO- and MAPK-independent, PI3K-dependent manner. These inhibitory effects of resveratrol on chemokine receptor binding and expression may contribute, in part, to its cardiovascular protective activity in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.