Abstract
We study a certain class of supersymmetric (SUSY) observables in 3d $\mathcal{N}=2$ SUSY Chern-Simons (CS) matter theories and investigate how their exact results are related to the perturbative series with respect to coupling constants given by inverse CS levels. We show that the observables have nontrivial resurgent structures by expressing the exact results as a full transseries consisting of perturbative and non-perturbative parts. As real mass parameters are varied, we encounter Stokes phenomena at an infinite number of points, where the perturbative series becomes non-Borel-summable due to singularities on the positive real axis of the Borel plane. We also investigate the Stokes phenomena when the phase of the coupling constant is varied. For these cases, we find that the Borel ambiguities in the perturbative sector are canceled by those in nonperturbative sectors and end up with an unambiguous result which agrees with the exact result even on the Stokes lines. We also decompose the Coulomb branch localization formula, which is an integral representation for the exact results, into Lefschetz thimble contributions and study how they are related to the resurgent transseries. We interpret the non-perturbative effects appearing in the transseries as contributions of complexified SUSY solutions which formally satisfy the SUSY conditions but are not on the original path integral contour.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have