Abstract

Currently, electronic total stations based on the principles of laser long-range distance measurement are used for collecting geospatial information. As time goes, in the process of using the electronic total stations, their technical parameters vary, necessitating periodic calibration of the instruments. Calibration of the long-range distance measurement laser component of the electronic total stations is carried out at specialized baselines and consists in testing the constant component of an electronic total station, determining the scale error and determining the cyclic error. In the territory of the Czech Republic, two geodetic baselines are operated, the National Calibration Baseline Hvězda and Koštice. Koštice is the Czech State Long Distances Measuring Standard, where electronic total stations are calibrated. From 2017 to 2020, about 600 electronic total stations by different manufacturers Leica Geosystems, Trimble, Topcon, Sokkia, Nikon, Pentax, South and Geomax were calibrated. The total number of measurements performed under the program in all combinations has equaled about 40000. In this paper, results of analysis many years’ measurements performed at the geodetic baseline Koštice from 2017 to 2020 with electronic total stations manufactured by Leica Geosystems are presented. In total, 9186 measurements between the baseline sections 1–2, 1–3, 1–4, 1–5, 1–6, 1–7 and 1–8 have been analyzed. For each section, measurements have been detected which did not pass the Grubbs test criterion (the Smirnov – Grubbs test). Altogether, 261 outliers have been detected, totaling 3 % of the total number of measurements. After excluding the detected outliers with the algorithm of the parametric version of least squares optimization, the length of each section of the baseline was found, and the accuracy of the results obtained was evaluated. The calculated values of the length of the baseline sections are in generally good agreement with the results of the measurements performed at the geodetic baseline Koštice by the specialists from the laboratory of the Bundeswehr University in Munich (Germany) and the results of similar measurements conducted at the same baseline by the specialists from the Research Institute of Geodesy, Topography and Cartography (Czech Republic). For section 1–5, based on the results of both verifications, differences have been obtained exceeding the permissible values of the accuracy of determining baseline characteristics. This may be related to the fact that there are displacements of certain pillars, which mainly have a periodic character and depend on the season. To allow more specific assumptions regarding instability of certain pillars, it is recommended to verify the lengths of the baseline sections once in three months, according to the program in all combinations, which will allow comparison of the values of the confidence limits of the baseline section lengths and putting forward hypotheses regarding variations in the position of individual centers, so that the deviations revealed should be included into the residual uncertainty of length measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call