Abstract
15 prism-shaped steel samples were removed from the lower head of the damaged Three Mile Island Unit 2 (TMI-2) nuclear reactor pressure vessel to assess the effects of approximately 19 tonne of molten core debris that had relocated there during the 1979 loss-of-coolant accident. Metallographic examinations of the samples revealed that inside-surface temperatures of 800–1100°C were attained during the accident, in an elliptical ‘hot spot’ with dimensions of about 1 m × 0.8 m. Tensile, creep and Charpy V-notch specimens were cut from the samples to assess the mechanical properties of the lower head material at temperatures up to the peak accident temperature. These properties were used in a margin-to-failure analysis of the lower head. Examinations of instrument nozzles removed from the lower head region assisted in defining the relocation scenario of the molten core debris and showed that the lower head was largely protected from catastrophic failure by a solidified layer below the molten core debris that acted as a partial thermal insulator.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have