Abstract

Objectives: The purpose of this study is to show the preliminary results of using chitosan-based scaffold (BST-CarGel®) with microfracture for treatment of acetabular chondral delamination associated with femoroacetabular impingement. Methods: A prospective study was performed on 13 hips. Patients were selected in the age group between 18 and 50 years. Patients with delamination of acetabular cartilage associated with femoroacetabular impingement received arthroscopic debridement and microfracture technique. Then cases with defect > 2 cm2 were considered for the application of BST-CarGel® and included in the study. Also, reattachment of the torn labrum and resection of the cam deformity were performed according to the case. For evaluation of the functional outcome, the patients had completed the hip outcome score (HOS) pre- and post-operatively. For evaluation of the regeneration of the cartilage, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) was used and the percentage of defect filling and type of cartilage studied. Results: Patients had a mean age of 41 years, with moderate to high level of activity (mean Tegner scale 7). The mean size of the chondral defect after debridement was 3.7 cm2. The mean HOS for daily live activities has been improved from 64.4 to 87.4 and for sports subscale from 35.2 to 75.2, which is statistically highly significant. All patients had > 90% of filling of chondral defect. Conclusion: The use of BST-CarGel® with microfracture for treatment of acetabular chondral delamination associated with femoroacetabular impingement can improve the functional outcome at two years, with a complete restoration of the cartilage defect in magnetic resonance images (MRI) with specific cartilage sequences.

Highlights

  • Femoroacetabular impingement (FAI), as a change in the morphology of the proximal femur or the acetabulum, produces a mechanical disturbance in the hip joint which can initiate the degenerative process and osteoarthritis (OA) [1]

  • The microfracture technique has been extensively studied for a long time as a cost-effective and less invasive method for treatment of cartilage lesions, and became a gold standard of care especially for small full-thickness defects supported by the excellent early functional improvement

  • The microfracture technique depends on the stimulation of subchondral bone marrow by penetrations, which liberates undifferentiated stem cells, and a blood clot is formed in the defect which provides a supporting environment for the cartilage progenitor cells, and differentiates into stable fibrocartilage

Read more

Summary

Introduction

Femoroacetabular impingement (FAI), as a change in the morphology of the proximal femur or the acetabulum, produces a mechanical disturbance in the hip joint which can initiate the degenerative process and osteoarthritis (OA) [1]. There are two serious problems associated with FAI, chondral delamination which occurs more frequently with. Cartilage damage with FAI occurs mainly in the anterosuperior area of the acetabulum and can take the form of fibrillation, delamination, or complete defect, so it is a challenging problem as regards evaluation and management. The imaging techniques have been advanced to help surgeons. The quantitative magnetic resonance imaging (MRI) of the cartilage, as delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping, can map the concentration of glycosaminoglycans (GAGs) in the cartilage, so it provides high sensitivity and accuracy for detecting early damage and for follow-up of patients after conservative hip surgeries [3, 4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call