Abstract
We report on results concerning the global asymptotic stability (GAS) and absolute stability (ABST) of delay models of continuous-time neural networks. These results present sufficient conditions for GAS and in case the network has instantaneous signalling as well as delay signalling (for example, a delayed cellular neural network (DCNN)), are milder than previously known criteria; they apply to neural networks with a broad range of activation functions assuming neither differentiability nor strict monotonicity. We are therefore able to interpret the results as guarantees of absolute stability of the network with respect to the wide class of admissible activation functions. Furthermore, these results do not assume symmetry of the connection matrices. We also present a sufficient condition for absolute stability in the presence of nonconstant delays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.