Abstract

We consider the problem of absolute stability of linear feedback systems in which the control is a sector-bounded time-varying nonlinearity. Absolute stability entails not only the characterization of the most destabilizing nonlinearity, but also determining the parametric value of the nonlinearity that yields instability of the feedback system. The problem was first formulated in the 1940s, however, finding easily verifiable necessary and sufficient conditions for absolute stability remained an open problem all along. Recently, the problem gained renewed interest in the context of stability of hybrid dynamical systems, since solving the absolute stability problem implies stability analysis of switched linear systems. In this paper, we introduce the concept of generalized first integrals and use it to characterize the most destabilizing nonlinearity and to explicitly construct a Lyapunov function that yields an easily verifiable, necessary and sufficient condition for absolute stability of second-order systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.