Abstract

Large Au nanoparticles with an average size of approximately 10 nm supported on inert SiO(2) become active in low-temperature CO oxidation after the addition of NaNO(3). The catalyst structures have been characterized in detail by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and X-ray absorption spectroscopy. The NaNO(3) additive in Au/SiO(2) catalysts does not lead to the formation of fine Au nanoparticles, which are generally considered to be inevitable in low-temperature CO oxidation catalyzed by gold, nor does it alter the electronic structure of Au. The NaNO(3)-induced restructuring of large Au nanoparticles was proposed to create low-coordinated Au sites on the surface capable of catalyzing low-temperature CO oxidation. These results experimentally prove that the activity of supported Au nanoparticles in low-temperature CO oxidation could solely arise from their geometric structure, which greatly deepens the fundamental understandings of Au nanocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call