Abstract

Low-temperature catalytic CO oxidation is an important chemical process in versatile applications, such as the H2 utilization for low-temperature H2 air fuel cells. Pt-group metal catalysts are efficient but highly cost-consuming. This work demonstrates an excellent and sixpenny catalyst with earth-abundant Ni and Ce, in which Ni ions are atomically incorporated into the CeO2 matrix (Ni-Ce-Ox) by synchronous spray-pyrolysis (SSP) of mixture nitrates of Ni and Ce. The Ni-Ce-Ox catalyst presents a mesoporous structure. Revealed by a model reaction of 1% CO, 1% O2, and 98% balance He at a space velocity of 13,200 mL/gcat/h, Ni-Ce-Ox catalysts display a typical volcano-shaped relationship between reactivity and Ni incorporation amount. The optimized Ni incorporation appears with a high Ni/Ce atomic ratio of 0.25, endowing the T50 (temperature corresponding to a CO conversion of 50%), which is lower-shifted by 165 °C than that of pristine CeO2 (266 °C). The density functional theory (DFT) calculations further indicate that the much-reduced oxygen vacancy formation energy at Ni-Ce single-atom sites boosted the adsorption activation of the CO molecule and therefore promoted the CO oxidation process. Besides, the2 Ni-Ce-Ox from the SSP method presents better performance than the counterparts from immersion and hydrothermal methods. This work paves a way to access efficient noble-metal-free catalysts for low-temperature CO oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call