Abstract

Genetic functions have evolved over long timescales and can be encoded by multiple genes dispersed in different locations in genomes, and although contemporary molecular biology enables control over single genes, more complex genetic functions remain challenging. Here, we study the restructuring and mobilization of a complex genetic function encoded by 10 genes, originally expressed from four operons and two loci on the Escherichia coli genome. We observe subtle phenotypic differences and reduced fitness when expressed from episomal DNA and demonstrate that mutations in the transcriptional machinery are necessary for successful implementation in different bacteria. The work provides new approaches for advanced genome editing and constitutes a first step toward modularization and genome-level engineering of complex genetic functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.