Abstract
In 1965 Hennie proved that one-tape deterministic Turing machines working in linear time are equivalent to finite automata, namely they characterize regular languages. This result has been improved in different directions, by obtaining optimal lower bounds for the time that one-tape deterministic and nondeterministic Turing machines need to recognize nonregular languages. On the other hand, in 1964 Kuroda showed that one-tape Turing machines that are not allowed to use any extra space, besides the part of the tape which initially contains the input, namely linear bounded automata, recognize exactly context-sensitive languages. In 1967 Hibbard proved that for each integer \(d\ge 2\), one-tape Turing machines that are allowed to rewrite each tape cell only in the first d visits are equivalent to pushdown automata. This gives a characterization of the class of context-free languages in terms of restricted Turing machines. We discuss these and other related models, by presenting an overview of some fundamental results related to them. Descriptional complexity aspects are also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.