Abstract

For a size parameter s: ℕ → ℕ, the Minimum Circuit Size Problem (denoted by MCSP[s(n)]) is the problem of deciding whether the minimum circuit size of a given function f : {0,1}ⁿ → {0,1} (represented by a string of length N : = 2ⁿ) is at most a threshold s(n). A recent line of work exhibited hardness magnification phenomena for MCSP: A very weak lower bound for MCSP implies a breakthrough result in complexity theory. For example, McKay, Murray, and Williams (STOC 2019) implicitly showed that, for some constant μ₁ > 0, if MCSP[2^{μ₁⋅ n}] cannot be computed by a one-tape Turing machine (with an additional one-way read-only input tape) running in time N^{1.01}, then P≠NP. In this paper, we present the following new lower bounds against one-tape Turing machines and branching programs: 1) A randomized two-sided error one-tape Turing machine (with an additional one-way read-only input tape) cannot compute MCSP[2^{μ₂⋅n}] in time N^{1.99}, for some constant μ₂ > μ₁. 2) A non-deterministic (or parity) branching program of size o(N^{1.5}/log N) cannot compute MKTP, which is a time-bounded Kolmogorov complexity analogue of MCSP. This is shown by directly applying the Neciporuk method to MKTP, which previously appeared to be difficult. 3) The size of any non-deterministic, co-non-deterministic, or parity branching program computing MCSP is at least N^{1.5-o(1)}. These results are the first non-trivial lower bounds for MCSP and MKTP against one-tape Turing machines and non-deterministic branching programs, and essentially match the best-known lower bounds for any explicit functions against these computational models. The first result is based on recent constructions of pseudorandom generators for read-once oblivious branching programs (ROBPs) and combinatorial rectangles (Forbes and Kelley, FOCS 2018; Viola 2019). En route, we obtain several related results: 1) There exists a (local) hitting set generator with seed length O(√N) secure against read-once polynomial-size non-deterministic branching programs on N-bit inputs. 2) Any read-once co-non-deterministic branching program computing MCSP must have size at least 2^Ω(N).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call