Abstract

A large amount of parallel training corpus is necessary for robust, high-quality voice conversion. However, such parallel data may not always be available. This letter presents a new voice conversion method that needs no parallel speech corpus, and adopts a restricted Boltzmann machine (RBM) to represent the distribution of the spectral features derived from a target speaker. A linear transformation was employed to convert the spectral and delta features. A conversion function was obtained by maximizing the conditional probability density function with respect to the target RBM. A feasibility test was carried out on the OGI VOICES corpus. Results from the subjective listening tests and the objective results both showed that the proposed method outperforms the conventional GMM-based method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.