Abstract

Activation of the apoptotic pathway has been associated with promoting neuronal cell death in the pathophysiology of Parkinson disease (PD). Nonetheless, the mechanisms by which it may occur remain unclear. It has been suggested that stress-induced oxidation and potential apoptosis may play a major role in the progression of PD. Thus, in this study, we aimed to investigate the effect of subchronic restraint stress on striatal dopaminergic activity, iron, p53, caspase-3, and plasmatic acetylcholinesterase (AChE) levels in male Wistar rat model of PD induced by administration of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle (MFB). The obtained results showed that restraint stress exacerbates motor coordination deficits and anxiety in animals treated with 6-OHDA in comparison to animals receiving saline, and it had no effect on object recognition memory. On another hand, 6-OHDA decreased dopamine (DA) levels, increased iron accumulation, and induced overexpression of the pro-apoptotic factors caspase-3, p53, and AChE. More interestingly, post-lesion restraint stress exacerbated the expression of caspase-3 and AChE without affecting p53 expression. These findings suggest that subchronic stress may accentuate apoptosis and may contribute to DA neuronal loss in the striatal regions and possibly exacerbate the progression of PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.