Abstract


 
 
 
 Let G be a connected graph. A set S ⊆ V (G) is a restrained 2-resolving hop dominating set of G if S is a 2-resolving hop dominating set of G and S = V (G) or ⟨V (G)\S⟩ has no isolated vertex. The restrained 2-resolving hop domination number of G, denoted by γr2Rh(G) is the smallest cardinality of a restrained 2-resolving hop dominating set of G. This study aims to combine the concept of hop domination with the restrained 2-resolving sets of graphs. The main results generated in this study include the characterization of restrained 2-resolving hop dominating sets in the join, corona, edge corona and lexicographic product of graphs, as well as their corresponding bounds or exact values.
 
 
 

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.