Abstract
Let G be a connected graph with vertex and edge sets V (G) and E(G), respectively. A set S ⊆ V (G) is a hop dominating set of G if for each v ∈ V (G) \ S, there exists w ∈ S such that dG(v,w) = 2. A set S ⊆ V (G) is a super hop dominating set if ehpnG(v, V (G) \ S) ≠ ∅ foreach v ∈ V (G) \ S, where ehpnG(v, V (G) \ S) is the set containing all the external hop private neighbors of v with respect to V (G) \ S. The minimum cardinality of a super hop dominating set of G, denoted by γsh(G), is called the super hop domination number of G. In this paper, we investigate the concept and study it for graphs resulting from some binary operations. Specifically, we characterize the super hop dominating sets in the join, and lexicographic products of graphs, and determine bounds of the super hop domination number of each of these graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.