Abstract

The study explores the potential of an indigenous halo-tolerant microbe identified as Bacillus spp. SSAU-2 in enhancing soil fertility and promoting plant growth for sustainable agricultural practices under the influence of multiple abiotic stresses such as Cr(VI), high salinity, and artificial drought condition. The study investigated various factors influencing IAA synthesis by SSAU-2, such as pH (5 to 11), salinity (10 to 50g/L), tryptophan concentration (0.5 to 1%), carbon (mannitol mand lactose), and nitrogen sources (peptone and tryptone). The highest IAA concentration was observed at pH 10 (1.695mg/ml) and pH 11 (0.782mg/ml). IAA synthesis was optimized at a salinity level of 30g/l, with lower and higher salinity levels resulting in decreased IAA concentrations. Notably, the presence of mannitol and lactose significantly augmented IAA synthesis, while glucose and sucrose had inhibitory effects. Furthermore, peptone and tryptone played a pivotal role in enhancing IAA synthesis, while ammonium chloride exerted an inhibitory influence. SSAU-2 showed a diverse array of capabilities, including the synthesis of gibberellins, extracellular polymeric substances, siderophores, and hydrogen cyanide along with nitrogen fixation and ammonia production. The microbe could efficiently tolerate 45% PEG-6000 concentration and effectively produce IAA in 15% PEG concentration. It could also tolerate high concentration of Cr(VI) and synthesize IAA even in 50ppm Cr(VI). The findings of this study provide valuable insights into harnessing the potential of indigenous microorganisms to promote plant growth, enhance soil fertility, and establish sustainable agricultural practices essential for restoring the health of ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call