Abstract

For nonlinear eigenvalue problems T(λ)x = 0 satisfying a minmax characterization of its eigenvalues iterative projection methods combined with safeguarded iteration are suitable for computing all eigenvalues in a given interval. Such methods hit their limitations if a large number of eigenvalues is required. In this paper we discuss restart procedures which are able to cope with this problem, and we evaluate them for a rational eigenvalue problem governing vibrations of a fluid‐solid structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.