Abstract

Transplanted short-season cotton followed by winter wheat is widely cultivated in the North China Plain (NCP). However, data and guidelines on irrigation water management for the short-season cotton cultivation are lacking. In order to determine optimal irrigation practices for transplanted cotton in the NCP, a field experiment with surface drip and border irrigation was conducted in 2011, 2012 and 2013 seasons. Four irrigation treatments, namely full drip (DT), full border (BT), deficit drip (DDT) and deficit border (DBT) irrigation treatments, were evaluated on the basis of vegetative growth, evapotranspiration (ET), cotton yield, water use efficiency (WUE) and fiber quality. Results showed that the average seasonal ET ranged from 358 to 449 mm. Compared to the border irrigation, the drip irrigation improved vegetative growth, and the deficit irrigation inhibited vegetative growth compared with the full irrigation. DT produced the highest seed cotton yield of 3164 kg ha−1, while the minimum seed cotton yield of 2459 kg ha−1 was produced in the DBT. On average, DDT produced the largest WUE of 0.83 kg m−3, while the smallest in BT. On average, 33.4 % of the irrigation water was saved by DT compared to BT, and drip irrigation increased seed cotton yield by 11.5 %. In addition, drip irrigation tended to increase the fiber length and optimize the micronaire value. Deficit irrigation significantly decreased the fiber strength and reduced the fiber length. Overall, the DT is recommended as the optimal irrigation strategy for the short-season cotton in the NCP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.