Abstract

Though temperature over the past three decades has shown an asynchronous warming trend between daytime and nighttime, the response of vegetation activity to such non-uniform warming is still not very clear. In this study, the least squares linear trend analysis and geographic information system spatial analysis were conducted to analyze the spatiotemporal patterns of the daytime and nighttime warming based on the daily temperature data from 1982 to 2015 in Northwest China. The normalized difference vegetation index (NDVI) from Global Inventory Monitoring and Modeling System and vegetation type data were used to investigate the responses of vegetation activity to the daytime and nighttime warming using the partial correlation analysis. Our results suggested that (1) there was a very significant increasing trend in both daytime and nighttime temperatures in Northwest China from 1982 to 2015; night temperatures increased about 1.2 times faster than daytime temperatures, showing diurnal asymmetric warming; (2) the responses of vegetation activity to daytime and nighttime warming in Northwest China showed a distinct spatial pattern; the change in night temperatures had a more significant (positive in most regions) effect on vegetation; (3) various types of vegetation responded differently to asymmetric daytime and nighttime warming. Grassland NDVI, broad-leaved, and coniferous forest NDVI significantly responded to daytime warming. Shrub NDVI and desert NDVI significantly responded to night warming. These findings can deepen the understanding of the effects of the daytime and nighttime warming on vegetation activities in arid regions in the context of the current asymmetric warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.