Abstract

To clarify interactions between stomatal responses to two simultaneous environmental changes, the rates of change in stomatal conductance were measured after simultaneously changing two environmental factors from the set of air humidity, leaf water potential (hydraulic environmental factors), air CO(2) concentration and light intensity (photosynthetic environmental factors). The stomatal responses to changes in leaf water potential were not significantly modified by any other simultaneous environmental change. A decrease in air humidity was followed by a decrease in stomatal conductance, and an increase in air humidity was followed by an increase in the conductance, irrespective of the character of the simultaneous change in the photosynthetic environmental factor. If the simultaneous change had an opposite effect on stomatal conductance, the rate of change in stomatal conductance was higher than the theoretical summed rate-the sum of the rate following one environmental change and the rate following another environmental change, measured separately. That is, the stomatal response to air humidity dominated over the responses to photosynthetic environmental factors. Yet, if the simultaneous change in photosynthetic factors had a codirectional effect on stomatal conductance, the rate of stomatal conductance change was lower than the theoretical summed rate. After a simultaneous change of two photosynthetic environmental factors, the rate of stomatal conductance change was very similar to the theoretical rate, if both the environmental changes had a codirectional effect on stomatal conductance. If the changes in the photosynthetic factors had opposite effects on stomatal conductance, the conductance increased, irrespective of the character of the increasing environmental factor. In drought-stressed trees, the rates of change in stomatal conductance tended to differ from the theoretical summed rates more than in well-watered trees. Stomatal closure following an increase in CO(2) concentration was the stomatal response that was most strongly suppressed by the response to another simultaneous environmental change. Six species of temperate deciduous trees were shown to be similar in their relations between the stomatal responses to two simultaneous environmental changes. The mechanism and ecological significance of the interactions between the two signal response pathways of stomata are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call