Abstract

Mixed cultivation of fast-growing grasses and nitrogen (N)-fixing legumes for forage production is widely considered effective for obtaining sustained high forage yields without depleting soil N levels. However, the effects of monoculture and mixed culture of these species on soil food webs are poorly understood. In this study, soil nematode communities were examined as indicators of the soil food web structure of monoculture and mixed culture of grass and legume at three N levels, i.e., 338 (low), 450 (moderate), and 675 (high) kg N ha−1 year−1 across 2 years in wet and dry seasons, using the grass Paspalum wetsfeteini and the legume Medicago sativa (alfalfa), both commonly cultivated worldwide. Repeated-measures analysis of covariance showed that compared with grass monoculture, legume monoculture and grass-legume mixture increased abundances of herbivorous, bacterivorous, and fungivorous nematodes in the soil food web under the low and moderate N fertilization levels. Principal response curve results showed that the abundance of Helicotylenchus, a plant parasite, was significantly higher under legume monoculture than other planting systems at the low N fertilization level. Structural equation model analysis indicated that the legume increased bacterivore abundance, while increasing N fertilization decreased omnivore abundance. The legume might increase the quantity and quality of food resources for soil biota, resulting in the bottom-up control of soil nematode communities. Our results indicate that targeted control of a soilborne pathogen, Helicotylenchus, is required in alfalfa-based planting systems. In addition, high inorganic N application, which is detrimental to legume-rhizobia symbiosis, nullified the otherwise positive effects of legumes on soil nematodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.