Abstract

Environmental variables such as soil moisture and phosphorus (P) might influence above- and below-ground biodiversity. In this study, we investigated the rarely reported individual and interactive multifactor effects of soil moisture and phosphorus addition with the type of above-ground tree species (biological interactions) on the soil nematode community structure. We established a completely randomized experimental design with two plant types (N2-fixer and non-nitrogen fixer) and different combinations of water treatments and P additions (i.e., water with P addition, water only, drought with P addition, and drought only) in a greenhouse and investigated their effects on the soil chemical properties and nematode community. Soil samples were collected at the end of the experiment and were analyzed for soil moisture content (SM), available phosphorus (aP), nitrate nitrogen (NO3−–N), ammonium nitrogen (NH4+–N), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and nematode community. The following trophic groups were assigned to the nematodes: bacterivores (Ba), fungivores (Fu), omnivores–predators (Op), and plant parasites (PP). The channel index (CI), enrichment index (EI), maturity index (MI), genus richness (GR), and Simpson dominance (Ig) were adopted to indicate the indices of the nematode food web. Phosphorus addition and its interaction with water treatments had no statistically significant effects on the soil nematode community, but there were significant decreasing (p < 0.05) effects of P addition on the total density of nematodes of the N2-fixing tree under optimum water treatment. There were no significant interactive effects of P addition and water treatments on all the trophic groups, but plant type, water treatments, and their interactions significantly affected the density of most nematode trophic groups. The total nematode abundances of bacterivores, plant parasitic, omnivores, and enrichment index were significantly higher in the N2-fixers than in the non-nitrogen-fixing tree. Soil nematode abundance and community composition were more affected by the plant type than by the P addition and its interaction with water treatments. Drought exerted adverse effects on the total density of soil nematodes, the dominant genera, and the trophic groups. This study demonstrated that the rate of drought impact hinges more on the type of tree and that N2-fixing tree could still maintain the soil food web structure irrespective of the environmental changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call