7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1017/s0043174500055910
Copy DOIJournal: Weed Science | Publication Date: Jan 1, 1989 |
Citations: 11 |
Substances having anesthetic-like properties were examined for stimulation of redroot pigweed and witchgrass seed germination. Chemicals included the n-alcohols through C-5, 2-propanol, benzyl alcohol, diethyl ether, chloroform, and 2-bromo-2-chloro-1,1,1-trifluoroethanol. Redroot pigweed seeds required the far-red absorbing form of phytochrome (Pfr) for an anesthetic substance to increase germination, but in witchgrass seeds the active anesthetic substances stimulated germination without added Pfr. The correlation coefficient comparing relative activity (RA) versus the membrane/buffer partition coefficient (M/B) of the active substances was very poor (−0.37) for pigweed seeds but was −0.91 for witchgrass. Leakage of cellular materials, including electrolytes, substances absorbing at 280 nm, and amino acids from seeds treated with either active or inactive anesthetics, was not particularly indicative of effects on germination in both species. Application of increased pressure (0.965 MPa) during anesthetic treatment, which in animals prevents anesthesia, was found to act oppositely and increase seed response to ethanol in redroot pigweed seeds, but in witchgrass seeds pressure suppressed the stimulatory action of ethanol. In both species, pressure appeared to have an action of its own, but for this action to be expressed the presence of a stimulatory anesthetic was also required. The results do not appear to support a good relationship of anesthetic activity with seed membrane lipophilic components in redroot pigweed seeds, but the relationship seems likely for witchgrass seeds.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.