Abstract
The nucleus of the optic tract (NOT) and the dorsal terminal nucleus of the accessory optic tract (DTN) are essential nuclei for the generation of slow-phase eye movements during horizontal optokinetic nystagmus. We recorded from 101 neurons (all directionally selective) in four NOT/DTN of three trained and behaving rhesus monkeys. Neuronal activity increased when stimuli moved ipsiversively with respect to the recording site and decreased below spontaneous activity when stimuli moved contraversively. While the monkey fixated a small spot, some NOT/DTN neurons did not respond at all to the retinal image slip of a whole-field random dot pattern; others showed a monotonic increase of activity to increasing velocities of that stimulus. The velocity range tested was up to 100 degrees/s. During the execution of optokinetic nystagmus, 39 of 73 cells tested showed a velocity-tuned response with an average optimum at 21 degrees/s retinal image slip. Following saccades during optokinetic nystagmus (quick phases), the NOT/DTN neuronal activity briefly attained the level of spontaneous activity, as predicted from the velocity selectivity during optokinetic nystagmus. Immediately upon cessation of optokinetic stimulation in the preferred direction, NOT/DTN activity returned to the spontaneous level and did not reflect the ongoing optokinetic afternystagmus in darkness. Most NOT/DTN neurons displayed direction selectivity also during smooth pursuit. Twenty-one of 50 cells tested (42%) always responded to the retinal slip of the target (target velocity cells), 16 cells (32%) responded to the retinal slip of the background (background velocity cells), and 13 cells (26%) did not respond at all during smooth pursuit. We conclude from our results that the NOT/DTN is an essential structure for the processing of the direction and speed of retinal image slip. This information is then used for the generation and maintenance of slow eye movements, preferentially during horizontal optokinetic nystagmus but also during pursuit eye movements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have