Abstract
Heavy metals (HMs) contamination around smelters poses serious stress to soil microbiome. However, the co-effect of multiple HMs and native vegetation rhizosphere on the soil ecosystem remains unclear. Herein, effects of high HMs level and the rhizosphere (Tamarix ramosissima) on soil bacterial community structure and metabolic profiles in sierozem were analyzed by coupling high-throughput sequencing and soil metabolomics. Plant roots alleviated the threat of HMs by absorbing and stabilizing them in soil. High HMs level decreased the richness and diversity of soil bacterial community and increased numbers of special bacteria. Plant roots changed the contribution of HMs species shaping the bacterial community. Cd and Zn were the main contributors to bacterial distribution in non-rhizosphere soil, however, Pb and Cu became the most important HMs in rhizosphere soil. HMs induced more dominant metal-tolerant bacteria in non-rhizosphere than rhizosphere soil. Meanwhile, critical metabolites varied by rhizosphere in co-occurrence networks. Moreover, the same HMs-tolerant bacteria were regulated by different metabolites, e.g. unclassified family AKYG1722 was promoted by Dodecanoic acid in non-rhizosphere soil, while promoted by Octadecane, 2-methyl- in rhizosphere soil. The study illustrated that high HMs level and rhizosphere affected soil properties and metabolites, by which soil microbial community structure was reshaped.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have