Abstract

Aquatic plants are essential components in the regulation of microhabitat complexity and physico-chemical parameters in lake ecosystems. Increased eutrophication, land use change, modification of hydrological regimes, and expansion of invasive species are expected to impact aquatic plant community composition; however, historical pathways and response patterns are not well understood at the national scale. We analyzed temporal changes in aquatic plant communities in Japan from the early 1900s to the 2000s using field survey records from 248 lakes. Relationships of species associations with climate, land use, and lake characteristics were described using a joint species distribution model. The mean variation attributable to lake characteristics was 25.4%, followed by climate (14.0%), and land use (10.5%). Among the 13 functional traits used in our analysis, sexual and pollination traits showed marked responses to precipitation and land use. Hypohydrophily increased with precipitation, whereas monoecious aquatic plants increased in lakes surrounded by urbanized area. The relative ratio of floating to submerged plants has increased over time. Our results provide insight into long-term changes in aquatic plant communities and identify functional traits sensitive to environmental change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call