Abstract

AbstractThe climatological features of the winter snow depth over the Tibetan Plateau and the summer precipitation in China are diagnosed using datasets obtained from 78 snow observation stations and 160 rainfall stations during 1957 to 1998. The climatic effects of the snow anomaly over the Tibetan Plateau on the regional summer monsoon climate in China are diagnosed and numerically simulated by use of a regional climate model (RegCM2). The singular value decomposition technique is adopted to diagnose the relationships between the previous winter and spring plateau snow depth anomalies and the spring and summer regional precipitation in China. It is found that the snow depth anomaly, especially in winter, is one of the factors influencing precipitation in China; however, it is perhaps not the only one, and even not the most important one. Nevertheless, it is proved that the winter snow anomaly over the Tibetan Plateau is relatively more important than that in spring for the regional precipitation in China. Results of numerical simulations show that the snow anomaly over the plateau has effects that are evident on China's summer monsoon climate. The increase of both snow cover and snow depth can delay the onset and weaken the intensity of the summer monsoon obviously, resulting in a decrease in precipitation in southern China and an increase in the Yangtze and Huaihe River basins. The influence of the winter snow depth is more substantial than that of both the winter snow cover and the spring snow depth. The mechanism of how the plateau snow anomaly influences the regional monsoon climate is briefly analysed. It is found that snow anomalies over the Tibetan Plateau change the soil moisture and the surface temperature through the snowmelt process at first, and subsequently alter heat, moisture and radiation fluxes from the surface to the atmosphere. Abnormal circulation conditions induced by changes of surface fluxes may affect the underlying surface properties in turn. Such a long‐term interaction between the wetland and the atmosphere is the key process resulting in later climatic changes. Copyright © 2003 Royal Meteorological Society

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call