Abstract

The intraseasonal oscillation (ISO) of the East Asian summer monsoon (EASM) is an important factor affecting summer precipitation in China, but the relationship between the ISO of the EASM and summer precipitation in southwest China is currently still unclear. The relationship between the two is discussed, and the following conclusions are drawn: (1) there is a significant positive correlation between East Asian monsoon surge intensity and summer precipitation in southwest China. When the monsoon surge is stronger (weaker), the precipitation in southwest China is more (less). However, the areas where the monsoon surge has a more obvious effect on the summer precipitation in southwest China are mainly located east of 105° E, and the monsoon surge has no obvious effect on the area west of 105° E. This may be more (less) the case in monsoon surge years, when a low-frequency oscillation of 30–60 days (10–20 days) plays a dominant role. The East Asian region has a longitudinal wave train of “+ − +” (“− + −“), the western Pacific subtropical high is westerly (easterly), the South China Sea and western Pacific is affected by anticyclone (cyclone), the EASM is active (suppressive), eastern southwest China has water vapor convergence (divergence) and upward (downward) airflow. (2) We found that 1998 was a typical year for the 30–60 days ISO of the EASM. There are two obvious 30–60 days oscillation cycles. In this year, when the intensity of the ISO of the EASM increases (decreases), the range of positive precipitation anomaly region in southwest China extends (decreases). The atmospheric circulation characteristics show that, when the western Pacific subtropical high is west (east) and south (north), and there is obvious anticyclonic (cyclonic) circulation in China–western Pacific, and the EASM is stronger (weaker), which leads to more (less) precipitation in southwest China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.