Abstract

The effects of antibiotics on the proliferation of antibiotic resistant genes (ARGs) in WWTPs have drawn great attention in recent years. The effects of antibiotics on ARGs in the enhanced biological phosphorus removal (EBPR) system and its mechanisms, however, are still not well understood. In this study, EBPR systems were constructed using activated sludge to investigate the effects of ten commonly detected antibiotics in the environment on the proliferation of ARGs and the mechanisms involved. The results showed that the total abundance of ARGs increased to varying degrees with the addition of different antibiotics (0.05 mmol/L), and the top 30 ARGs increased by 271.1 % to 370.0 %. Mobile genetic elements (MGEs), functional modules, and the bacteria community were consistently related to the changes in ARGs. Refractory antibiotics, in particular, have a stronger promoting effect on transduction in the EBPR system. The insertion sequence common region (ISCR) and transposon (Tnp) were identified as crucial factors in the proliferation of ARGs. Moreover, the risk of polyphosphate accumulating organisms (PAOs) carrying ARGs in the presence of antibiotics should not be ignored. Our findings emphasize the potential efficacy of employing strategies that target the reduction of MGEs, regulation of cellular communication, and management of microbial communities to effectively mitigate the risks associated with ARGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call