Abstract

This study reports a proof-of concept study to demonstrate the novel approach of phenotyping microbial communities in enhanced biological phosphorus removal (EBPR) systems using single cell Raman microspectroscopy and link it with phylogentic structures. We use hierarchical clustering analysis (HCA) of single-cell Raman spectral fingerprints and intracellular polymer signatures to separate and classify the functionally relevant populations in EBPR systems, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), as well as other microbial populations. We then investigated the link between Raman-based community phenotyping and 16S rRNA gene-based phylogenetic characterization of four lab-scale EBPR systems with varying solid retention time (SRT) to gain insights into possible genotype-function relationships. Combined and simultaneous phylogenetic and phenotypic evaluation of EBPR ecosystems revealed SRT-dependent phylogenetic and phenotypic characteristics of the PAOs and GAOs, and their association with EBPR performance. The phenotypic diversity and plasticity of PAO populations, which otherwise could not be obtained with phylogenetic analysis alone, showed complex but potentially crucial association with EBPR process stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call