Abstract

Ozone production efficiency (OPE), a measure of the number of ozone (O3) molecules produced per emitted NOX (NO + NO2) molecule, helps establish the relationship between NOX emissions and O3 formation. We estimate long-term OPE variability across the eastern United States using two novel approaches: an observation-based empirical method and a chemical transport model (CTM) method. The CTM approach explicitly controls for differing O3 and NOX reaction product (NOZ) deposition rates and separately estimates OPEs from on-road mobile and electricity generating unit sources across a broad spatial scale. We find lower OPEs in urban areas and that average July OPE increased over the eastern United States domain between 2001 and 2011 from 11 to 14. CTM and empirical approaches agree at low NOZ concentrations, but CTM OPEs are greater than empirical OPEs at high NOZ. Our results support that NOX emissions reductions become more effective at reducing O3 at lower NOZ concentrations. Electricity generating unit OPEs are higher than mobile OPEs except near emissions locations, meaning further utility NOX emissions reductions will have greater per unit impacts on O3 regionally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call