Abstract

The effect of pulse voltage, polarity, duty cycle, and oxygen flow rate on ozone production is studied in a coaxial cylindrical-type dielectric barrier discharge ozonizer at atmospheric pressure. For a constant oxygen flow rate, the ozone concentration increases with increasing input voltage and is nearly proportional to the ozone production efficiency. The bipolar waveform of the applied voltage results in higher ozone concentration and production efficiency than the unipolar one (positive or negative) regardless of duty cycle. A higher duty cycle increases the ozone concentration slightly for the unipolar voltage, while it affects little the ozone production efficiency for either voltage polarity. For constant pulse polarity and duty cycle, the ozone concentration decreases with increasing oxygen flow rate, however, the maximum ozone production efficiency for each flow rate shows only a minor difference for the change in flow rate. The results confirm that the ozone production efficiency depends more on the pulse power characteristics and less on the oxygen flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.