Abstract

The aim of the present work was designed to develop a model-sustained release matrix tablet formulation for Metformin hydrochloride using wet granulation technique. In the present study the formulation design was employed to statistically optimize different parameters of Metformin hydrochloride tablets at different drug-to-polymer ratios employing polymers Hydroxypropyl methylcellulose of two grades K4M and K100M as two independent variables whereas the dependent variables studied were X60, X120, T50, T90, n, and b values obtained from dissolution kinetics data. The in vitro drug release studies were carried out at simulated intestinal fluids, and the release showed a non-Fickian anomalous transport mechanism. The drug release was found to reveal zero order kinetics. The granules and the tablets were tested for their normal physical, morphological, and analytical parameters and were found to be within the satisfactory levels. There were no significant drug-polymer interactions as revealed by infrared spectra. It has been found out that on an optimum increased Hydroxypropyl methylcellulose K100M concentration and decreased Hydroxypropyl methylcellulose K4M concentration the formulations were elegant in terms of their release profiles and were found to be statistically significant and generable.

Highlights

  • Diabetes is one of the major causes of death and disability in the world

  • Metformin hydrochloride (Met-HCl) is a biguanide derivative of highly water soluble oral antihyperglycaemic agent used in the treatment of type II noninsulin-dependent diabetic mellitus (NIDDM) [1,2,3]

  • Metformin hydrochloride was obtained as gift sample from Intas Pharmaceuticals, Bagheykhola, Sikkim, India

Read more

Summary

Introduction

Diabetes is one of the major causes of death and disability in the world. World Health Organization (WHO) estimate for the number of people with diabetes worldwide, in 2000, is 171 million, which is likely to be at least 366 million by 2030. Metformin hydrochloride (Met-HCl) is a biguanide derivative of highly water soluble oral antihyperglycaemic agent used in the treatment of type II noninsulin-dependent diabetic mellitus (NIDDM) [1,2,3]. Gastrointestinal absorption of Met-HCl is incomplete with an absolute bioavailability of 40–60% (under fasting conditions) and in combination with rapid elimination, and 20–30% of an oral dose is recovered in faeces [2, 5]. It decreases as the dose increases, suggesting some form of saturable absorption or permeability/transit time-limited absorption [5,6,7]. In order to achieve an optimal therapy, the effort mainly focuses on formulation of a sustained release matrix tablet of Met-HCl dosage forms [4, 8, 9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call