Abstract

In order to combat environmental pollution and the depletion of non-renewable fuels, feasible, eco-friendly, and sustainable biodiesel production from non-edible oil crops must be augmented. This study is the first to intensify biodiesel production from castor oil using a self-manufactured cylindrical stator-rotor hydrodynamic cavitation reactor. In order to model and optimize the biodiesel yield, a response surface methodology based on a 1/2 fraction-three-level face center composite design of three levels and five experimental factors was used. The predicted ideal operating parameters were found to be 52.51°C, 1164.8rpm rotor speed, 27.43min, 8.4:1 methanol-to-oil molar ratio, and 0.89% KOH concentration. That yielded 95.51% biodiesel with a 99% fatty acid methyl ester content. It recorded a relatively low energy consumption and high cavitation yield of 6.09 × 105J and 12 × 10-3g/J, respectively. The generated biodiesel and bio-/petro-diesel blends had good fuel qualities that were on par with global norms and commercially available Egyptian petro-diesel. The preliminary cost analysis assured the feasibility of the applied process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.