Abstract

In this study, 1-methylimidazolium hydrogen sulfate, [HMIM]HSO4, ionic liquid, was successfully applied as a catalyst in the biodiesel production through the esterification reaction of oleic acid with methanol. A response surface methodology (RSM) known as Box-Behnken Design (BBD) was applied to optimize the main experimental reaction conditions, using a set of 27 experiments. This optimization was based on the maximization of both the conversion of oleic acid and the Fatty Acid Methyl Esters (FAME) content of the obtained biodiesel samples. It was concluded that the two most relevant parameters for both the conversion and the FAME content were the molar ratio between oleic acid and methanol and the catalyst dosage. Accordingly to the model, the optimum condition for the maximum conversion was determined as being 8 h, 110 ± 2 °C, 15:1 M ratio methanol/oleic acid and a catalyst dosage of 15 wt%, resulting in a 95% conversion and for the maximum FAME content were 8 h, 110 ± 2 °C, 14:1 M ratio and a catalyst dosage of 14 wt%, leading to a FAME content of 90%. The kinetics of the esterification reaction was also evaluated, and the experimental results were well described using a third-order reaction model. The kinetic parameters were experimentally determined, and the value of the activation energy was 6.8 kJ/mol and the pre-exponential factor was 0.0765 L2.mol−2.min−1 confirming that the ionic liquid, [HMIM]HSO4, is a good alternative for replacing traditional catalysts for biodiesel production through esterification reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.